Azimuthal anisotropy

Nuclear collision is never exactly head-on-head \rightarrow azimuthal symmetry is broken

Hydrodynamic flow

Sensitive to early pressure and dynamics of initial system

Two-Particles Correlation Function

We observe a sum of

- >Flow anisotropy (cos)
- >Hard scattering peaks (gauss) 0.5
- >Resonace decays

CARTOON Hard scattering Resonance decays 0.5 1.5 2.5 3.5 ΔФ [rad]

Directed

flow

Fourier decomposition

Elliptic

flow

J.Y.Ollitrault, nucl-th/0004026

Prague, August. 27, 2003

Low-pT correlation functions

$$\sqrt{s_{NN}} = 200 \; GeV$$

- Anisotropy increases with pt and Centrality
- Asymmetric Component seen especially at high pt

Important to test the response of the asymmetry to various Cuts
•Jets

•v2 values

Differential v2(pT)

V2 Saturates at ~ 2.5 GeV/c; Similar Trend for all Centralities V2 increases with Centrality

STAR Reaction Plane $v_2(p_T) \sqrt{s}$ evolution

Azimuthal anisotropy

What did we learn from observed azimuthal anisotropies?

- $v_2(pt)$ is substantial and saturates at $p_T > 3$ GeV/c for all centralities at both beam energies
- for pt < 1GeV/c the conventional hydrodynamics seems to dominate
- for pt > 1GeV/c we observe \sqrt{s} independent emission pattern.

v2 generated by energy loss of high-pT partons

escape probability

$$f(\vec{x}_0, \vec{n}) = exp[-\kappa \int_0^\infty ds \, L_-(\vec{x}_0 + s\vec{n}) \cdot L_+(\vec{x}_0 + s\vec{n})].$$

$$L_{\pm}(x,y) = 2[R^2 - y^2 - (x \pm b/2)^2]^{1/2}$$

Or $T_A(x_0)$ thickness function with Saxon-Woods energy prof.

$v_2(p_1)$ from CGC

Hadron production in forward region in p+p

D from fragmentation

D⁺ from coalescence and fragmentation

$$\alpha(x_F) = \frac{d\sigma_{D^-}/dx_F - d\sigma_{D^+}/dx_F}{d\sigma_{D^-}/dx_F + d\sigma_{D^+}/dx_F}$$

V2 amplification by quark recombination

D.Molnar, S. Voloshin nucl-th/0302014

$$\frac{dN_B}{d^2p_{\perp}}(\vec{p}_{\perp}) = C_B \left[\frac{dN_q}{d^2p_{\perp}}(\vec{p}_{\perp}/3) \right]^3$$

$$\frac{dN_M}{d^2p_{\perp}}(\vec{p}_{\perp}) = C_M \left[\frac{dN_q}{d^2p_{\perp}}(\vec{p}_{\perp}/2) \right]^2$$

 $v_{2,M}(p_{\perp}) \approx 2v_{2,q}(\frac{p_{\perp}}{2}), \quad v_{2,B}(p_{\perp}) \approx 3v_{2,q}(\frac{p_{\perp}}{3})$

Hall of fame

nucl-th/0306027 v2 5 Jun 2003 "Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase" R. J. Fries, B. M"uller, and C. Nonaka S. A. Bass

Hall of fame II

Beautiful! We might see the partonic flow!

STAR strange mesons and baryons scaling

Hard scattering in Heavy Ion collisions

schematic view of jet production

Particle production @RHIC

 $-dn_{ch}/d\eta \mid_{\eta=0} = 670$, $N_{total} \sim 7500$ 92% of (15,000) all quarks from vacuum !

Jets @RHIC:

- -produced early $\tau < 1 \text{fm}$
- -primarily from gluons
- -30-50% of particle production

Observed via:

- —fast leading particles
- -azimuthal correlations

Scattered partons radiate energy in colored medium \rightarrow suppression of high p_t particles

Hard Scattering (Jets) as a Probe of Dense Matter

Jet event in e⁺e⁻ collision

Can we see jets in high energy Au+Au?

Two-particles correlation in pp

pp correlation function, even at intermediate p_T range, dominated by jet fragments.

The near angle peak width σ_N intra-jet correlations

The far angle peak width $\sigma_{\rm F}$ inter-jet correlations

Prague, August. 27, 2003 Jan Rak

 $Fit = const + Gauss(0) + Gauss(\pm \pi)$

jet fragmentation transverse momentum

 $\langle |j_{\perp y}| \rangle$ = the mean transverse momentum of the hadron with respect to the jet axis.

$$\left\langle \left| \boldsymbol{j}_{\perp y} \right| \right\rangle = \frac{1}{\sqrt{\pi}} \sqrt{\left\langle \boldsymbol{j}_{\perp}^{2} \right\rangle} = \left\langle p_{\perp} \right\rangle \sin \frac{\boldsymbol{\sigma}_{N}}{\sqrt{\pi}}$$

 $\langle |\mathbf{k}_{\perp y}| \rangle$ = the mean effective (net) transverse momentum of the two colliding partons.

parton
$$\mathbf{p}_{\mathbf{p}_{\mathbf{q}}}$$
 $\mathbf{p}_{\mathbf{p}_{\mathbf{q}}}$ $\mathbf{p}_{\mathbf{q}}$ parton erse

$$\langle |\mathbf{k}_{\perp y}| \rangle = \frac{1}{\sqrt{\pi}} \sqrt{\langle \mathbf{k}_{\perp}^{2} \rangle} = \langle p_{\perp} \rangle \cos\left(\frac{\sigma_{N}}{\sqrt{\pi}}\right) \sqrt{\frac{1}{2}} \tan^{2}\left(\sqrt{\frac{2}{\pi}} \sigma_{F}\right) - \tan^{2}\left(\frac{\sigma_{N}}{\sqrt{\pi}}\right)$$

$$\langle k_{\perp}^{2} \rangle_{AA} = \langle k_{\perp}^{2} \rangle_{vac} + \langle k_{\perp}^{2} \rangle_{IS \text{ nucl}} + \langle k_{\perp}^{2} \rangle_{FS \text{ nucl}}$$

charged hadrons correlation in pp \sqrt{s} =

At low p_T <2GeV the near angle peak width and $\langle |j_{Ty}| \rangle$ is reduced by "Seagull effect"

see. e.g Phys.Lett.B320:411-416,1994

pp reference

PHENIX preliminary

 $\langle |j_{Ty}| \rangle = 373\pm16 \text{ MeV/c}$

 $\langle |\mathbf{k}_{\mathrm{Ty}}| \rangle = 725 \pm 34 \; \mathrm{MeV/c}$

P0 fit to data above 1.5 GeV/c

Comparison with pp

CCOR Collaboration Phys. Lett. 97B(1980)163

Compilation of $\langle p_{\perp} \rangle_{pair}$ results: Apanasevich et al Phys. Rev. D59(1999)074007

$$\sqrt{\left\langle \mathbf{p}_{\perp}^{2}\right\rangle _{\mathbf{pair}}}=\sqrt{2}\sqrt{\left\langle \mathbf{k}_{\perp}^{2}\right\rangle }=\sqrt{2\pi}\left\langle \left|\mathbf{k}_{\perp\mathbf{y}}\right|\right\rangle$$

Initial/final (cold) state broadening -

If the fragmentation occurs only outside QCD medium - σ_N remain unchanged by induced gluon radiation

Prague, August. 27, 2003

Jan Rak

Jet-cone correlations

One of the most direct way of jet detection in AA high-multiplicity environment is a method based on two-particle correlations.

- Jet Correlation (STAR Collaboration) -

back-to-back correlation suppressed in central Au+Au

Azimuthal distributions in Au+Au

Near-side: peripheral and central Au+Au similar to p+p

Strong suppression of back-to-back correlations in central Au+Au

STAR jets and away-side quenching

Hint of surface emission?

Nucl-ex/0210033

Near angle peak width in AuAu

Let us do the same fit, but σ_N fitted as well.

The dashed line corresponds to the $\langle |j_{Ty}| \rangle = 400$ MeV/c There is no significant broadening observed. Could be explained by jet fragmentation outside the QCD medium.

Back-to-back suppression in quenching theory

Quenching leaves always b2b from corona....

Summary

- HI physics enters the pQCD regime, but not exactly in the way we have (some of us) expected.
- ullet First two years of RHIC running unexpected experimental results in high-p_ sector, namely
 - huge high-p_T particles yield suppression
 - huge p_T and \sqrt{s} independent azimuthal anisotropy
 - disappearance of back-to-back jet in central collisions
 - weaker back-to-back correlation observed at RHIC \sqrt{s} = 200GeV relative to SPS \sqrt{s} = 17GeV
- No coherent picture yet, but we will find out soon!

Back up slides

Back up slides

Model III: High-pT suppresion

Dima Kharzeev hep-ph/0210332

Looks good, but there is a lot of open questions. If *CGC* is right

- azimuthal anisotropy
- high-pt suppression
 in pA should be significant.

We will know in couple of days!!

HIJING and opacity

>80xmore opaque gluon plasma @ RHIC then from pQCD (see D. Molnar nucl-th/0005051, nucl-th/0104073 or

http://nt3.phys.columbia.edu/people/molnar)

Structure of the nucleon

Wavelength $\lambda = h/p$

AGS

See the whole proton

 $Q^2 = 0.1 \, GeV^2$

SPS

See the quark substructure

 $Q^2 = 1.0 \text{ GeV}^2$

RHIC

See many partons

 $Q^2 = 20.0 \text{ GeV}^2$

CERES $\sqrt{s} = 17$ GeV identified π^{+-} in RICH

Large sample of high-pT pions identified in RICH (γ -threshold 32 -> pions > 5GeV/c) Back-to-back part of correlation function was parameterized solely by v2(pT). Significant excess of back-to-back correlations above 1.5-2GeV/c!

Prague, August. 27, 2003 Jan Rak 33

v₂(p₁) PHENIX vs. STAR

Up to 2 Gev/c there is no or very little room for non-flow anisotropy!

- * PHENIX two particle correl.
- >Good agreement with RP
- * HIJING (dE/dz = 0 & 2 GeV/fm).
- > RP v_2 is too small over the full range, but grows with p_{\perp}
- Correlation v₂ is large,
 (not seen in data).

(See E.V. Shuryak, nucl-th/0112042)

side remark:

$$\langle x_{\perp} \rangle = 2 \langle p_{\perp} \rangle / \sqrt{s} \approx 0.1$$
 @SPS ≈ 0.01 @RHIC

Surface Emission in Glauber Model

Radiation from thin surface slab towards outer half-plane.

 $T_{AA}(b,rT)$ overlap function (hard sphere)->

-> production prob. dist in (xT,yT)

pQCD ingredients

In order to calculate the yield of high p_{T} hadrons

$$E_h \frac{d\sigma_h^{pp}}{d^3p} = K \sum_{abcd} \int dz_c dx_a dx_b \int d^2 \mathbf{k}_{Ta} d^2 \mathbf{k}_{Tb} f(\mathbf{k}_{Ta}) f(\mathbf{k}_{Tb}) \underline{f_{a/p}(x_a, Q_a^2) f_{b/p}(x_b, Q_b^2)} \underbrace{D_{h/c}(z_c, Q_c^2) \frac{\hat{s}}{\pi z_c^2} \frac{d\sigma^{(ab \to cd)}}{d\hat{t}} \delta(\hat{s} + \hat{u} + \hat{t})$$

Flux of incoming partons (structure functions) from Deep Inelastic Scattering

Fragmentation functions D(z) in order to relate jets to observed hadrons

Perturbative QCD

$$\sigma_{AA}(b_c) = \sigma_{pp} \int_{0}^{b_c} db^2 T_{AA}$$

